- -

مادة الرياضيا<u>ت</u> مدة الإنجاز : 3 ساعا<u>ت</u> Prof : BENELKHATIR الإمتحان التجريبي للسنة الثانية باكالوريا علوم تجريبية دورة أبريل 2006

<u>ثانوية الفتح</u> نيابة الخميسات ذ: عبد الله بن لختير

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة

■ مسألة: (07 نقط و نصف)

. $f\left(x\right) = \frac{1}{x} + \ln\left|x\right|$: نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة بما يلي : الجزء الأول: وليكن $f\left(x\right) = \frac{1}{x} + \ln\left|x\right|$. $\left(O,\vec{i}\,,\vec{j}\,\right)$ منحناها في معلم متعامد وممنظم $\left(C_f\right)$ منحناها في معلم متعامد وممنظم

 $\lim_{x\to 0^+} f\left(x
ight)$ و اعط تأویلهما الهندسي . (0.75 ن) ا $\lim_{x\to 0^+} f\left(x
ight)$ و اعط تأویلهما الهندسي . (0.75

(1ن) . $-\infty$ و $+\infty$ بجوار (C_f) بجوار (C_f) الذيهانيين ل (C_f) بجوار (C_f) بجوار (C_f) بجوار (C_f) بجوار (C_f) بجوار (C_f) بخوار (C_f) بخوار (C_f)

(ن 0,25) . $\forall x \in D_f : f'(x) = \frac{x-1}{x^2}$: و أن D_f و أن الدالة f قابلة للإشتقاق على D_f و أن الدالة f

(ن 0,25) . D_f على المالة f و أنشيء جدول تغيراتها على D_f المالة بالمالة و المالة ا

(ن 0.5) . $\left]-2,-rac{3}{2}
ight[$ للمجال المجال lpha ينتمي إلى المجال المفاصيل في نقطة وحيدة أفصولها lpha ينتمي إلى المجال $\left(C_{f}
ight)$ ومن أن $\left(C_{f}
ight)$

(ن 0.5) . Ω بين أن $(x = C_f)$. ثم أدرس تقعر $(x = C_f)$ و حدد إحداثيتي نقطة إنعطافه $\forall x \in D_f$. $(x = C_f)$ بين أن $(x = C_f)$ بين أن $(x = C_f)$

(ن 0.75) . $\left(O,\vec{i},\vec{j}\right)$ في المعلم $\left(C_{f}\right)$ في المعلم عند نقطة الإنعطاف Ω

f المعرفة على المجال $F(x) = -x + (x+1) \ln x$ بين أن الدالة العددية F المعرفة على المجال $F(x) = -x + (x+1) \ln x$ على المجال $F(x) = -x + (x+1) \ln x$ على المجال $F(x) = -x + (x+1) \ln x$

(عامستقيمين اللذين (C_f) و المستقيمين اللذين (C_f) و المستقيمين اللذين (C_f) و المستقيمين اللذين (0.25) . (0.25) . (0.25)

-- الجزء الثاني:

الدالة العددية المعرفة على $\mathbb R$ بما يلي :

$$\cdot \begin{cases} g(x) = |x|e^{\frac{1}{x}}; x \in \mathbb{R}^* \\ g(0) = 0 \end{cases}$$

و اعظ $\lim_{x\to 0^{-}}g\left(x\right)=\lim_{x\to 0^{+}}g\left(x\right)$ أ- بين أن $\forall x\in\mathbb{R}^{*}:g\left(x\right)=e^{f\left(x\right)}$ ، ثم إستنتج النهايتين (1

تأويلهما الهندسي . (0,75 ن)

($\dot{1}$) . $-\infty$ و $+\infty$ بجوار $\left(C_{g}\right)$ بجوار اللانهائيين ل

(ن 0,25). أ- أدرس قابلية إشتقاق الدالة g على يسار g على يسار g على يسار g على يسار g على g بدلالة ألم بدلالة g بدلالة g بدلالة g بدلالة g بدل

(ن 0,5) . أنشيء المنحنى $\left(C_{_g}
ight)$ في معلم متعامد و ممنظم -(3

. . .

مادة الرياضيات	الإمتحان التجريبي للسنة الثانية	ثانوية الفتح
مدة الإنجاز: 3 ساعات	باكالوريا علوم تجريبية	نيابة الخميسات
Prof: BENELKHATIR	دورة أبريل <u>2006</u>	ذ: عبد الله بن لختير

■ التمرین الأول: (نقطتین و نصف)

: بحيث (v_n) عتبر المتتاليتين العدديتين العدديتين و (u_n) عديث

.
$$\mathbb N$$
 کی $v_n=\ln\left(u_n\right)$ و $\begin{cases} u_0=e \\ u_{n+1}=\sqrt[3]{u_n}; \forall n\in\mathbb N \end{cases}$

- (ن 0,75) متتالية هندسية و اعط أساسها و حدها الأول . ($(v_n)_{n>0}$ ن) بين أن
- (ن 0.5) . $\lim_{n \to +\infty} v_n$ عبر عن الحد العام v_n بدلالة n لكل n من n من n عبر عن الحد العام n
- . $P_n=u_0 imes u_1 imes imes u_{n-1}$ و $S_n=v_0+v_1+....+v_{n-1}$ نضع (\mathbb{N}^* من N

(ن
$$0.5$$
) . $\lim_{n \to +\infty} S_n$ أ- عبر عن S_n بدلالة n لكل n من n من n من أب

(ن 0.75) . $\lim_{n \to +\infty} P_n$ بـ عبر عن P_n بـدلالة S_n بـ بـدلالة بـ عبر عن بـ بـد

■ التمرين الثاني: (05 نقط)

يحتوي صندوق على أربع كرات حمراء و كرتين سوداوين لا يمكن التمييز بينها باللمس .

1)- نسحب عشوانيا بالتتابع و بدون إحلال كرتين من الصندوق ، أحسب إحتمال كل حدث من الأحداث التالية:

و A_2 " الكرتين المسحوبتين سوداوين " (0.75

2)- بعد السحب الأول بقيت في الصندوق أربع كرات ، نجري سحبا ثانيا لكرتين بالتتابع و بدون إحلال .

و نعتبر الأحداث التالية:

" لم تسحب أية كرة سوداء عند السحب الثانى B_0

" سحبت بالضبط كرة واحدة سوداء عند السحب الثاني B_1

יי וואריבט ווהערפייניט או וואריבט וולוים וואריבט ווא

(1) .
$$p\left(B_{0}\right)$$
 . ثم إستنتج $p_{A_{1}}\left(B_{0}\right)$ و $p_{A_{1}}\left(B_{0}\right)$. ثم إستنتج $p_{A_{0}}\left(B_{0}\right)$. ثم إستنتج (1 ن) . $p\left(B_{2}\right)$ و $p\left(B_{1}\right)$. $p\left(B_{2}\right)$ و $p\left(B_{1}\right)$. أحسب بنفس الطريقة الإحتمالين : $p\left(B_{1}\right)$

ج- إذا علمت أنه عند السحب الثاني حصلنا على كرة سوداء بالضبط، فما هو إحتمال الحصول على كرة واحدة سوداء بالضبط عند السحب الأول (0,5) (0,5)

3)- نعتبر الحدث:

" لكى تسحب الكرتين السوداوين تم بالضبط إجراء السحب الأول والسحب الثانى R

(ن 0,75) .
$$p(R) = \frac{1}{3}$$
 : بين أن

4)- نسحب هذه المرة عشوانيا و في آن واحد ثلاث كرات من الصندوق ، و نعتبر المتغير العشوائي X الذي يربط كل سحبة ممكنة بعدد الكرات الحمراء المكونة لها .

(\dot{u} \dot{u}) . \dot{u} . \dot{u}) دد قانون إحتمال المتغير العشوائي \dot{u} ، ثم أحسب الأمل الرياضي

. . .

مادة الرياضيات	الإمتحان التجريبي للسنة الثانية	ثانوية الفتح
مدة الإنجاز: 3 ساعات	باكالوريا علوم تجريبية	نيابة الخميسات
Prof: BENELKHATIR	دورة أبريل 2006	ذ: عبد الله بن لختير

■ التمرين الثالث: (نقطة و نصف)

(P) و المستوى $\Omega(2,1,1)$ نعتبر النقطة $\Omega(2,1,1)$ و المستوى (E) في الفضاء (E) منسوب إلى معلم متعامد ممنظم الذي معادلته x+2y-3z=10 .

- (ن 0.5) . r=3 التي مركزها Ω و شعاعها r=3 التي مركزها (S) التي مركزها (S) التي معادلة ديكارتية للفلكة (S)
- (U) . R المعاعها H و شعاعها H دائرة H المية تحديد مركزها H و شعاعها H دائرة H
 - التمرين الرابع: (ثلاث نقط و نصف)

.
$$P(z) = z^3 - 2(\sqrt{3} + i)z^2 + 4(1 + i\sqrt{3})z - 8i$$
 : الحدودية $\mathbb C$ الحدودية

(ن 0,25) . بين أن المعادلة $P\left(z\right)=0$ تقبل حلا تخيليا صرفا z_0 ينبغي تحديده $P\left(z\right)=0$

.
$$\forall z\in\mathbb{C}$$
 : $P\left(z\right)=\left(z-z_{0}\right)\left(z^{2}-2\sqrt{3}z+4\right)$: تحقق من أن

 $z^2-2\sqrt{3}z+4=0$: ثم أوجد في المجموعة $\mathbb C$ العددين z_2 و z_1 العددين $\mathbb C$ العددين ثم أوجد في المجموعة $\mathbb C$ حيث $\mathbb C$ حيث $\mathbb C$ حيث $\mathbb C$

- (1,25) . z_2-z_0 و z_1-z_0 و z_2 و z_3 و z_0 المثلثي الأعداد العقدية التالية : z_0
 - . $\left(O,\vec{u},\vec{v}\right)$ منسوب إلى معلم متعامد و ممنظم (P) منسوب المستوى العقدي

نشيءالنقط $A\left(z_{0}\right)$ و $B\left(z_{1}\right)$ و $A\left(z_{0}\right)$ ، ثم بين أن الرباعي $A\left(z_{0}\right)$ معين .