الثانية بكالوريا علوم رياضية الأستاذ : الحيان المخروطيات

في المستوى (\mathcal{P}) المنسوب إلى معلم متعامد ممنظم $(\mathcal{P},\vec{i},\vec{j})$ ؛ نعتبر المنحنيين : (E) و (H) حيث :

$$(E)$$
: $(2x-4)^2 + y^2 = 36$
 (H) : $y^2 - (2x+4)^2 = 4$

- عدد طبیعة کل من المنحنیین (E) و (H) ثم حدد العناصر 1. المميزة لكل منهما.
 - (Γ) المعرف بالمعادلة :

$$4x |x| + y^2 - 16x - 20 = 0$$

اً - بین أن (Γ) هو اتحاد جزء من (E) وجزء من (Γ) .

 (C,\vec{i},\vec{j}) في المعلم (Γ) في المعلم

التمرين 2 :

المستوى (\mathcal{P}) منسوب إلى معلم متعامد ممنظم (\mathcal{P}) منسوب

.
$$x^2 - \frac{y^2}{4} = 1$$
 : نعتبر الهذلول (%) الذي معادلته

. أ- حدد رأسي (\mathfrak{K}) وبؤرنيه F و مقاربيه . (\mathfrak{R}) ب- أنشئ

. $M_{0}\left(\sqrt{5},4
ight)$. $M_{0}\left(\sqrt{5},4
ight)$ في النقطة (\mathfrak{K}) عدد معادلة المماس

ينتمي إلى الدائرة التي الدائرة التي الدائرة التي الدائرة التي $\left(T\right)$ ينتمي إلى الدائرة التي مرکزها O وشعاعها 1.

التمرين 3 :

 $\left(O\,,\vec{i}\,,\vec{j}\,
ight)$ منسوب إلى معلم متعامد ممنظم $\left(\mathcal{P}
ight)$ منسوب

ي مجموعة F'(1,2) و F(3,2) مجموعة F'(1,2) بنتير النقطتين F(3,2). MF + MF' = 4 : النقط M بحيث . (E) أ- حدد طبيعة

(E) ب- أكتب المعادلة المختصرة ل

 $3x^{2}-4y^{2}-12x=0$: اليكن (\Re) الهذلول الذي معادلته (\mathfrak{R}) . حدد رأسي أعط المعادلة المختصرة ل

 (C,\vec{i},\vec{j}) و (\mathfrak{R}) في نفس المعلم (E,\vec{i},\vec{j}) .

التمرين 4 :

في المستوى (\mathscr{P}) المنسوب إلى معلم متعامد ممنظم (i,j)؛ نعتبر المجموعتين (\mathcal{H}) و (\mathcal{H}) المعرفتين على التوالي بالمعادلتين :

$$(E)$$
 : $4y^2 = -9x^2 + 36x$

 (\mathfrak{R}) : $4y^2 = 9x^2 - 36x$

ا. بین أن (E) إهلیلیج محددا مرکزه ورؤوسه.

. بین أن (\mathfrak{K}) هذلول محددا رأسیه ومقاربیه .

 (Γ) المجموعة (O, \vec{i}, \vec{j}) المجموعة (عند المنسوب إلى المعلم (O, \vec{i}, \vec{j}) المجموعة (عند المنسوب ال . $4y^2 = |9x^2 - 36x|$: that is a substitution of the substituti

التمرين 5 :

المستوى $(\mathcal{G},\vec{i},\vec{j})$ منسوب إلى معلم متعامد ممنظم متعامد نعتبر في الذي بؤرته النقطة $F\left(1,3\right)$ ودليله المرتبط المخروطي (Γ)

بالبؤرة $Y=\frac{25}{3}$ الذي معادلته $y=\frac{25}{3}$ وتباعده

. $e = \frac{3}{5}$ المركزي

ا. أ- حدد طبيعة المخروطي (Γ) وتحقق من أن (Γ) هي مجموعة Γ . $25MF^2 = 9MH^2$: النقط M التي تحقق

ب- بين أن $0 = -375 - x^2 + 16y^2 - 50x$ معادلة ديكار تية (Γ) .

ين أن النقطة $\Omega(1,0)$ هي مركز المخروطي $\Omega(1,0)$ وأن معادلته

المختصرة في المعلم $\left(\Omega, \vec{i}, \vec{j}\right)$ هي : $1 = \frac{X^2}{25} + \frac{Y^2}{25}$ ثم (Γ) أنشى

التمرين 6 :

في المستوى (\mathcal{P}) المنسوب إلى معلم متعامد ممنظم $(\mathcal{P},\vec{i},\vec{j})$ ؛ نعتبر النقطة $\Omega(-1,1)$ والهذلول (\mathfrak{R}) الذي معادلته :

$$x^2 - 9y^2 + 2x + 18y - 17 = 0$$

 $(\Omega, \vec{i}, \vec{j})$ أن المعادلة المختصرة للهذلول (\mathfrak{R}) في المعام (1

$$\frac{X^2}{9} - Y^2 = 1$$
 : هي

ب- حدد رأسي (\mathfrak{R}) وبؤرتيه F و F ومقاربيه في المعلم $.(O,\vec{i},\vec{j})$

 (\mathfrak{H}) الهذلول (\mathfrak{H}) .

التمرين 7 :

في المستوى $\left(\mathcal{P}\right)$ المنسوب إلى معلم متعامد ممنظم في المستوى المنسوب إلى عام بنعتبر

النقطتين $F'(0,-\sqrt{5})$ و $F'(0,-\sqrt{5})$ النقطتين النقط النقط النقط النقط . |MF - MF'| = 4: بحيث M(x, y)

 $\left(E
ight)$. حدد طبيعة المجموعة $\left(E
ight)$

. $MF^2 - MF'^2 = -4y\sqrt{5}$: أ- بين أن 2

. $MF^2 = \left(2 - y \frac{\sqrt{5}}{2}\right)^2$: ن- استنتج أن

 $x^2 - \frac{y^2}{4} = -1$ هي: (E) هي: المعادلة المختصرة للمجموعة (E) هي: E. أنشئ المجموعة (E).

التمرين 8 :

في المستوى (\mathcal{P}) المنسوب إلى معلم متعامد ممنظم في المستوى M(x,y)و و F'(0,-4) و F(0,4) مجموعة النقط النقطتين

. *MF* + *MF'* = 10 : بحيث

(E) حدد طبيعة المجموعة . 1

. $MF^2 - MF'^2 = -16y$: أـ بين أن

. $MF = 5 - \frac{4}{5}y$ ب- استنتج أن

 $\frac{x^2}{9} + \frac{y^2}{25} = 1$: $\frac{x^2}{9} + \frac{y^2}{25} = 1$

(E) أنشئ المجموعة.

التمرين 9 :

المستوى (\mathcal{P}) منسوب إلى معلم متعامد ممنظم (\mathcal{P}) منسوب

 $16y^4 = (x^2 - 4)^2$: نعتبر M(x, y) النتي تحقق M(x, y)

نگافئ
$$16y^4 = \left(x^2 - 4\right)^2$$
 : اُ- بین اُن : .1 $\left(x^2 - 4y^2 - 4\right)\left(x^2 + 4y^2 - 4\right) = 0$

. (E) و إهليلج (\mathfrak{R}) و المنتتج أن (Γ) هي اتحاد هذلول

. أ- حدد رأسي (\mathfrak{R}) وبؤرتيه ومقاربيه \mathfrak{R}

ب- تحقق من أن $\left(E\right)$ وحدد $M_0\left(\sqrt{3},\frac{1}{2}\right)$ تتتمي إلى الإهليلج وحدد معادلة ديكار تية لمماس و (E) في النقطة معادلة ديكار تية لمماس

 (Γ) . أنشئ المجموعة

التمرين 10 :

المستوى (\mathcal{P}) منسوب إلى معلم متعامد ممنظم $(\mathcal{P}, \vec{i}, \vec{j})$. نعتبر في

الذي بؤرته النقطة $F\left(2,1\right)$ ودليله المرتبط (\mathcal{F}) المخروطي

بالبؤرة $x=rac{1}{2}$ هو المستقيم $\left(D
ight)$ الذي معادلته $x=rac{1}{2}$ وتباعده

. e=2 المركزي

ا. أ- حدد طبيعة المخروطي (Γ) وتحقق من أن (Γ) هي مجموعة $MF^2=4MH^2$.

ب- بين أن : 0=4-2y-2+2 هي معادلة ديكارتية لب- بين أن : (Γ) .

2. أ- بين أن النقطة $\Omega(0,1)$ هي مركز المخروطي Ω وحدد رأسيه ومقاربيه في المعلم $\Omega(\vec{i},\vec{j})$.

 (Γ) المخروطي ((Γ)).

التمرين 11 :

في المستوى (\mathcal{G}) منسوب إلى معلم متعامد ممنظم $(\mathcal{G},\vec{i},\vec{j})$ ؛ نعتبر المجموعة (E) المعرفة بالمعادلة : (E)

$$\vec{v} = -\frac{\sqrt{5}}{5}\vec{i} + \frac{2\sqrt{5}}{5}\vec{j}$$
 و $\vec{u} = \frac{2\sqrt{5}}{5}\vec{i} + \frac{\sqrt{5}}{5}\vec{j}$: نضع

 (\mathcal{P}) معلم متعامد ممنظم للمستوى $(\mathcal{P},\vec{u},\vec{v})$ بين أن

. $\left(O,\vec{u},\vec{v}\right)$ معادلة المنحنى $\left(E\right)$ بالنسبة للمعلم

E. استنتج طبيعة وعناصر المجموعة (E)

التمرين 12:

في المستوى (\mathcal{G}) المنسوب إلى معلم متعامد ممنظم (\mathcal{G}) ؛ نعتبر المجموعة : (E) : $5x^2 + 5y^2 + 8xy - 9 = 0$

و ليكن $R = R\left(O, \frac{\pi}{4}\right)$ الدوران الذي مركزه O وزاويته $r = R\left(O, \frac{\pi}{4}\right)$.

 $\left(O\,, \vec{i}\,, \vec{j}\,
ight)$ وليكن $\left(O\,, \vec{u}\,, \vec{v}\,
ight)$ المعلم المتعامد الممنظم صورة المعلم المعلم المتعامد المنظم . r

 $\left(E\,
ight)$ ثم استنتج طبيعة المعلم معادلة معادلة $\left(E\,
ight)$ بالنسبة للمعلم معادلة معادلة المعلم (

. (E) ثم أنشئ (E) عدد العناصر المميزة للمجموعة (E)

التمرين 13 :

في المستوى (\mathcal{P}) المنسوب إلى معلم متعامد ممنظم (σ,\vec{i},\vec{j}) ؛ نعتبر المخروطي (Γ_m) المعرف بمعادلته الديكارتية :

$$mx^{2} + (2m-7)y^{2} + (m-4)x - m = 0$$

. $m \in \mathbb{R} - \left\{0, \frac{7}{2}\right\}$ حيث m بار امتر حقيقي و

 $\left(\Gamma_{m}\right)$ التي يكون من أجلها m التي يكون من أجلها الماليحا

ب- حدد العناصر المميزة ل (Γ_4) (البؤرتان و الدليلان و التباعد المركزي) ثم أنشئ (Γ_4) .

2. لكل n من \mathbb{N} نعتبر النقطة M_n ذات الأفصول x_n المعرفة كالتالي M_n هي النقطة O. نحصل على M_{n+1} انطلاقا من M_n بالطريقة التالية :

المستقيم المار من M_n و الموازي للمستقيم (D) ذي المعادلة : y=-x يقطع (Γ_4) في نقطتين إحداهما أفصولها سالب نسميها E_n مماثلة النقطة E_n بالنسبة لمحور الأراتيب .

هي المسقط العمودي ل E_n' على محور الأفاصيل وتكون M_n' هي منتصف القطعة M_{n+1} .

: هي المتتالية المعرفة بما يلي المتتالية المعرفة الم الي الم الي المتتالية المعرفة الم الم

$$\begin{cases} x_0 = 0 \\ x_{n+1} = f(x_n), & n \in \mathbb{N} \end{cases}$$

$$f(x) = \frac{1}{5} \left(\sqrt{5 - x^2} + 2x \right)$$

 $\exists k \in \]0,1[\ / \ \forall x \in \ [0,1] \ : \ |f'(x)| \leq k \ :$ بين أن = - بين باستعمال مبر هنة التز ايدات المنتهية أن =

$$. \forall n \in \mathbb{N} : \left| x_{n+1} - \frac{\sqrt{2}}{2} \right| \le k \left| x_n - \frac{\sqrt{2}}{2} \right|$$

. $\lim_{n\to +\infty} x_n$ متقاربة أحسب $(x_n)_{n\in \mathbb{N}}$ المتتالية العددية

