

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2012 عناصر الإجابة

7	المعامل	الفيزياء والكيمياء NR30	المادة
4	مدة الإنجاز	شعبة العلوم الرياضية (أ) و (ب)	الشعبارة) أو المسئلك

مرجع السوال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال	
، (7 نقط) لأول : (4,75 نقط)				
t etts i hista hister	0.25	يل: (4,75 نقط) تفاعلية ايونات الإيثانوات		
كتابة المعادلة المنمذجة للتحول حمض قاعدة	0,25	معادلة تفاعل أيون الإيثانوات مع الماء	-1 -1.1	
	0,25	الجدول الوصفي		
تحديد نسبة التقدم النهائي انطلاقا من معطيات تجريبية	0,25	$\tau_1 = \frac{K_e}{C_l} \cdot 10^{pH}$	-1.2	
	0,25	$\tau_1 = 2,51.10^{-4}$		
م در دار در	0,25	$K = \frac{[CH_3COOH].[HO^-]}{[CH_3COO^-]}$		
تحديد ثابتة التوازن	0,25 0,25	$ ext{K} = rac{{ au_1}^2}{1-{ au_1}} \cdot ext{C}_1 \ ext{K} = 6.3.10^{-10} : ext{K}$ التحقق من قيمة	-1.3	
	0,25	$C_{2}.\tau_{2}^{2} + K.\tau_{2} - K = 0$		
معرفة أن ثابتة التوازن لا تتعلق	0,25	$\tau_2 = 7.93.10^{-4}$		
بالتراكيز البدئية	0,25	1,93.10 الاستنتاج الاستنتاج	-1.4	
	0.25			
استغلال ثابتة التوازن	0,25	$K = \frac{x_{\text{éq}}^2}{(C.V_1 - x_{\text{éq}})(C.V_2 - x_{\text{éq}})}$	-2 -j-2.1	
	0,5	$_{ m K}$ و التحقق من قيمة $_{ m keq}=9,88.10^{-5}~{ m mol}$	2.1	
علاقة ثابتة التوازن المقرونة بتفاعل	0,25			
		$K = \frac{K_{A2}}{K_{A1}}$	ب_	
للمز دوجتين المتواجدتين معا	0,25	$K_{A2} = 1,6.10^{-4}$		
تعيين النوع المهيمن انطلاقا من معرفة pH المحلول و pK _A	0,25 0,25	$pH = pK_{A2} + log \frac{[HCOO^{-}]}{[HCOOH]} b = pK_{A1} + log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}$ $pH = 5,7$	-2.2	
المزدوجة	0,5	و $pH > pK_{A2} ightharpoons pH > pK_{A1} ightharpoons pH > pK_{A1}$ و CH_3COO^-		

فحة	الص
	2
3	

الامتحان الوطني الموحد للبكالوريا -الدورة العادية كاك حاصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب)

مرجع السؤال في الإطار المرجعي		اني: (2,25نقطة) دراسة عمود نحاس - ألومينيوم	الجزء الثا
منحى تطور مجموعة كيميائية	0,25	$Q_{ri} = \frac{[Cu^{2+}]_{i}^{3}}{[Al^{3+}]_{i}^{2}}$ $(2) \text{if } Q_{ri} = C_{0} = 5.10^{-2} > K$	-1 -1.1
تمثيل عمود (التبيانة الاصطلاحية)	0,25	(-) $Al/Al^{3+}//Cu^{2+}/Cu$ (+)	-1.2
العلاقة بين كمية المادة للأنواع الكيميائية المستهلكة وشدة التيار	0,25 0,25	الطريقة $[\mathrm{Cu}^{2+}] = \mathrm{C}_0 - \frac{\mathrm{I}}{2\mathrm{F.V}} \cdot \mathrm{t}$	-2.1-2
ومدة الاشتغال	0,25 0,25	الطريقة I = 0,19 A	-2.2
إيجاد العلاقة بين كمية المادة للأنواع الكيميائية المتكونة أو المستهلكة وشدة	0,25	$\Delta m = -\frac{1}{3} \cdot \frac{I.t_{c}.M}{F}$	-3
التيار ومدة اشتغال العمود	0,25	$\Delta m \approx -44,3 \text{ mg}$	

مرجع السؤال في الإطار المرجعي		الفيزياء (نقطتان) التفاعلات النووية لنظائر الهيدروجين	تمرین 1 :
كتابة معادلة التفاعل النووي بتطبيق قانوني الانحفاظ	0,25	${}^{3}_{1}H \longrightarrow {}^{0}_{-1}e + {}^{3}_{2}He$	-1 -1.1
معرفة و استغلال قانون التناقص الإشعاعي و استثمار المنحنى الموافق له	0,25 0,25	الطريقة التوصل إلى $t_{1/2} pprox 12,3 \ ans$.	-1.2
تحليل منحنى أسطون لاستجلاء الفائدة الطاقية للانشطار و الاندماج	0, 5	المجال ① + التعليل	-2 -2.1
حساب الطاقة المحررة	0,25 0,25 0,25	القيمة المطلقة للطاقة الناتجة عن الاندماج : $\Delta E_1 = N.I(m(^4He) + m(^1n) - m(^3H) - m(^2H)I.c^2$ عدد نويدات الدوتيريوم في $1m^3$ من ماء البحر : $\Delta E_1 = 1.74.10^{26} \ \text{MeV}$	-2.2

مرجع السؤال في الإطار المرجعي	ضمنة	5,25 نقطة) تحديد مميزات وشيعة قصد استعمالها في استقبال موجة ه	تمرین 2 (5,25 نقطة)	
	0,25	$u_R + r.i + L \cdot \frac{di}{dt} = E$	-1 -1.1	
إثبات المعادلة التفاضلية و التحقق من حلها عند خضوع ثنائي القطب	0,25	$L\frac{du_R}{dt} + (R+r) \cdot u_R - R.E = 0$	_1	
بن هــه حــــري حــــــــــــــــــــــــــــــ	0,25	$U_0 = \frac{R.E}{R+r}$		
	0,25	$\lambda = \frac{R+r}{L}$	ب-	
استغلال وثائق تجريبية لتعرف التوتر ات الملاحظة	0 ,25	$R = \frac{U_0}{I}$	1.2	
اللولراك المرحطة استغلال تعبير التوتر بين مربطي وشيعة	0,25	$r = \frac{E - U_0}{I}$	-1.2 _i	
	0,25	r =24 Ω		
تحديد معامل التحريض لوشيعة انطلاقا من نتائج تجريبية	0,25 0,25	$u_{R}(0) = 0$ $\left(\frac{du_{R}}{dt}\right)_{0} = \frac{E.U_{0}}{L.I}$	- -	
المفارك من تناسع تجريبيا	0,25	$\begin{array}{cc} \text{(dt } f_0 & \text{L.I} \\ \text{L} = 0.5 \text{H} \end{array}$		

الامتحان الوطني الموحد للبكالوريا –الدورة العادية كاك – عناصر الإجابة – مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب)

تفسير خمود التذبذبات الكهربائية	0,25	التعليل	-2
للمتذبذب RLC من منظور طاقي			-i-2.1
استغلال وثائق تجريبية لتحديد قيمة	0,25	$L' = \frac{T^2}{4\pi^2.C}$	Ĺ
شبه الدور بالنسبة للدارة RLC واستغلال تعبير الدور الخاص	0,25	Γ^{\prime} تحديد قيمة T والتحقق من قيمة	
والمتدول تحبير الدور المتدن للمتذبذب LC	0,25	البرهنة	-2.2
EC	0,25	r'≈0 r' حساب	-2.2
شروط الحصول على تضمين	0,25	m = 0.6 < 1	-3
الوسع بجودة عالية	0,25	F ≥ 10.f	-3.1
معرفة دور دارة الانتقاء(الدارة السدادة) في انتقاء توتر مضمّن	0,5	6.10^{-12} F $<$ C ₀ = 8.10^{-12} F $<$ 12.10^{-12} F	-1-3.2
شرط الحصول على كشف الغلاف	0,25	$\frac{1}{F} << R_1.C_1 < \frac{1}{f}$	Ļ
بجودة عالية	0,25	$C = 5 \text{ nF}$ ؛ المكثف الملائم هو ذو السعة 0,33nF $<<$ $C_1 < 6,67nF$	•

	مظلی	3 (5,75 نقطة) الجزء الأول (2,5 نقطة) حركة سقوط،	التمرين 3
تطبيق القانون الثاني لنيوتن للتوصل	0,25	البرهنة	-1
إلى المعادلة التفاضلية لحركة مركز قصور جسم صلب في سقوط رأسي	0,25	$\alpha = \sqrt{\frac{m.g}{k}}$	-1
باحتكاك.	0,25x2	الجواب (ج) + التعليل $\alpha = \mathbf{v_e} = 5 \text{ m.s}^{-1}$	-2
استغلال المنحنى v_G = $f(t)$ لتحديد	0,25		-3
السرعة الحدية	0,25x2	$k = \frac{m.g}{\alpha^2} = 39,2 \text{ kg.m}^{-1}$ بوحدة k	-5
معرفة طريقة أولير	0,25x2	$v_{n+1} = v_n + a_n \cdot \Delta t$; $v_{n+1} = -\frac{g \cdot \Delta t}{\alpha^2} \cdot v_n^2 + v_n + g \cdot \Delta t$	-4
	0,25	$\Delta t = 0.2 \text{ s}$	
	لوازن	$\Delta t = 0.2 \; \mathrm{s}$ البخرء الثاني : (3.25 نقطة) النواس ال	
تطبيق العلاقة الأساسية للديناميك	0,25	$\ddot{\theta} + \frac{(m_1 + m_2)g_0.d}{L} \cdot \theta = 0$	-1
في حالة الدور ان لإثبات المعادلة التفاضلية لحركة نواس وازن		J_{Δ}	-1.1
	0,25	$T_0 = 2\pi \sqrt{\frac{J_\Delta}{(m_1 + m_2)g_0 d}}$ التوصل إلى	
تعبير الدور الخاص للنواس الوازن		$\sqrt{(m_1 + m_2)g_0.d}$	-1.2
	0,25	$T_0 = 2s$	
a b abb abb a ba	0,25	$T_0=2s$ عند مرور النواس بموضع التوازن : $\ddot{\theta}=0$ عند مرور النواس بموضع التوازن	
تطبيق القانون الثاني لنيوتن استغلال إحداثيي التسارع في أساس	0,25	$R_{\rm N} = (m_1 + m_2)(g_0 + d.\theta_0^2 \frac{4\pi^2}{T_0^2})$	-1.3
فريني فريني	0,25	$R = R_{N} = 2N$ $E_{m} = E_{c} + E_{pp} + E_{pt}$	
استغلال تعبير طاقة الوضع للي	0,25		-2
استغلال تعبير طاقة الوضع الثقالية للنواس الوازن	0,25	$b = \frac{(m_1 + m_2)d.g + C}{2}$; $a = \frac{J_{\Delta}}{2}$	-2.1
	0,25	$\frac{dE_m}{dt} = 0$	
استغلال انحفاظ الطاقة الميكانيكية	0,23		-2.2
للنواس الوازن	0,25	$\ddot{\theta} + \frac{b}{a} \cdot \theta = 0$	
	0,25 0,25x2	$T=T_0$ $C = 2.10^{-3} \text{ N.m.rad}^{-1}$ $C = d.(m_1 + m_2).(g_0 - g)$	-2.3