

مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين – دورة يوليوز 2012 الموضوع

وزارة التربية الوصنية المركز الوطنى للتقويم والامتحانات

المجال

المعامل: 1 مدة مدة 4 ساعات

مادة التخصص المدرسة: العلوم والتكنولوجيات الكهربانية

www.9alami.info

✓ Le sujet comporte au total 06 pages (noté sur 100 pts).

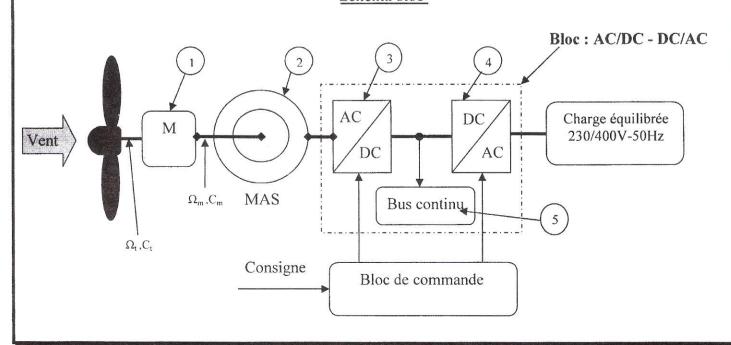
Le sujet comporte 2 parties:

الإنجاز:

Partie I. (/40pts) : Étude énergétique composée de : étude fonctionnelle, machine asynchrone et onduleur.

Partie II. (/60pts) : Étude des circuits d'une chaine de commande composée de : filtre, CAN et asservissement.

Toutes les composantes du sujet sont indépendantes.


- ✓ Le document réponse (page 6) doit être rendu.
- ✓ Aucun document n'est autorisé ;
- ✓ Sont autorisées les calculatrices de poche y compris celles programmables.

Partie I - Étude énergétique (/40pts)

Partie I A. Étude fonctionnelle (/10pts)

Les pales d'une éolienne mises en mouvement par le vent entrainent le rotor d'une machine asynchrone par l'intermédiaire d'un multiplicateur de vitesse à engrenage. L'énergie électrique absorbée par la charge est fournie par la machine asynchrone qui fonctionne en génératrice quand le couple exercé par le vent sur les pales est suffisant.

Schéma bloc

	www.9alami.info		
الصفح	وي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين 201 - الموضوع -	راة الدخول إلى مسلك تأهيل أساتذة التعليم الثأن	
1- Identifier et donner le rôle de chaque bloc du système. (/4pts)			
N° bloc	Identification	Rôle	
2,	Mortine synchrone MAPA	convertir l'Energie méronique	
- 1		1	
1	;	;	
multiplica 3- Expliquer	ent de multiplicateur (M) vaut 1, écrire la relation Ω_t , C_t et ses grandeurs de sorties Ω_m , C_m alors le rôle du bloc « AC/DC - DC/AC ». (/3pts) ade d'une machine asynchrone (/10pts)		
	ues de la machine :		
•	ôles (p=2), rotor à cage		
	mentation 230V - 50Hz		
	issance utile nominale : Pu=300\text{kW}		
	esse nominale $N=1485$ tr/min		
	ndement η=0.96	Ameleo 2 D = 11-W	
	pertes mécaniques sont supposées constantes et pertes fer rotoriques et les pertes joules statoria	_	

♦ Calculer la vitesse de synchronisme quand la machine est alimentée par le réseau 230V/50 Hz, déduire

 $P_{tr} = C_e \cdot \Omega_s$

 $P_M = C_e \cdot \Omega$

 $P_{\mu}=C_{\mu}.\Omega$

www.9alami.info

la valeur du glissement (g). (/1pt)

 P_{tr} : puissance transmise au rotor

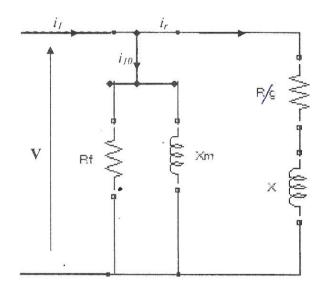
P_M: puissance mécanique

 P_f : Pertes fer statoriques ; P_{ir} : Pertes joule rotoriques

P_u: puissance utile

Pabs

(If En faisant apparaître les puissances suivantes :


 C_u : couple utile, C_e : couple électromagnétique Compléter le bilan des puissances ci-dessous : (/2pts)

مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين دورة يوليوز 2012 - الموضوع - المجال : مادة التخصص المدرسة - العلوم والتكنولوجيات الكهربانية

- 2- Calcul des couples et des puissances
 - 3.1: Calculer la puissance active absorbée par la machine. (/Ipt)
 - 3.2 : Calculer le couple utile nominal (/1pt)
 - 3.3 : Calculer le couple électromagnétique nominal. (/1pt)
 - 3.4 : Calculer la puissance nominale transmise au rotor P_{tr} , en déduire les pertes par effet joule P_{ir} .

(/1pt)

3- On admet qu'on peut modéliser chaque phase de la machine asynchrone fonctionnant en moteur par le schéma équivalent ci-contre:

Notations:

V: tension efficace aux bornes d'une phase i_1 : courant efficace dans une phase du stator

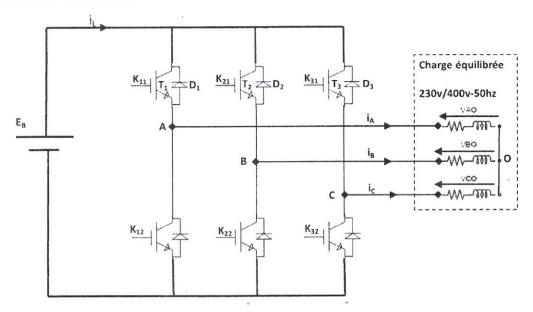
 R_f : résistance modélisant les pertes ferromagnétiques

 X_m : impédance de magnétisation

i, est le courant rotorique ramené au stator

On donne

$$X_m=1.3\Omega$$
; $X=0.13\Omega$; $R=0.005\Omega$


- 4.1 Exprimer les pertes fer statoriques P_f en fonction de R_f et V, déduire la valeur de R_f . (/1pt)
- 4.2 Exprimer la valeur efficace de courant i_t en fonction de V, X, R et g, donner sa valeur numérique pour g = 1%.
- 4.3 La puissance nominale transmise au rotor P_{tr} est donnée par $P_{tr} = 3 \cdot \frac{R}{\alpha} I_r^2$, calculer la valeur de P_{tr} pour g=1%. (/1pt)

Partie I C. Étude d'un onduleur de tension (/20pts)

L'onduleur permet à son tour de convertir la tension constante E_B en une tension sinusoïdale de fréquence 50 Hz et d'amplitude 230V.

مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين دورة يوليوز 2012 - الموضوع - الموضوع - المدرسة - العلوم والتكنولوجيات الكهريانية

Schéma de l'onduleur de tension:

- 1- Les commandes appliquées aux commutateurs hauts sont appelées k11, k21, k31, écrire l'équation qui lie le courant i_L aux commandes $(k_{11}, k_{21} \text{ et } k_{3L})$ et aux courants i_A , i_B et i_C . (/4pts)
- 2- Calcul des tensions simples :
 - 2.1 Donner la relation qui lie la tension U_{AB} aux tensions simples V_{A0} et V_{B0} (/2pts)
 - 2.2 Donner la relation qui lie tension U_{CA} aux tensions simples V_{A0} et V_{C0} . (/2pts)
 - 2.3 Déduire alors l'expression de V_{A0} en fonction de U_{AB} et U_{CA} (/2pts)
 - 2.4 Sur la même base que précédemment donner les expressions des tensions simples V_{B0} et V_{C0} en fonction des tensions U_{AB} , U_{CA} et U_{BC} . (/2pts)

Sur le Document réponse N°1:

- 2.5 Construire alors les chronogrammes des tensions composées U_{AB} , U_{CA} et U_{BC} . (/3pts)
- 2.6 Tracer les chronogrammes des tensions simples V_{A0} , V_{B0} et V_{C0} (/3pts)

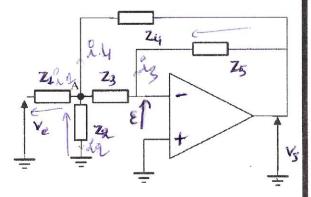
Sachant que l'amplitude du fondamental est donnée par l'équation suivante : $V_{A0eff}=rac{\sqrt{2}}{\pi}E_{B}$, déterminer la tension E_B . (/2pts)

Partie II : études des circuits d'une chaine de commande (/60 pts)

Partie II-A. Filtre (/25 pts)

Le schéma de la figure ci-dessous représente la structure d'un filtre actif dite de « Rauch »

L'amplificateur opérationnel est supposé parfait.

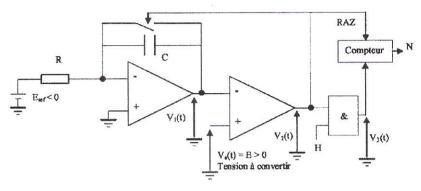

Z1 à Z5 sont des impédances.

1. Exprimer la fonction de transfert du montage $H = V_S/V_E$ en fonction des éléments du montage (Pour des raisons de simplicité dans les calculs, utilisez les admittances). (/7pts)

On suppose que les impédances complexes sont :

$$\underline{Z}_1 = \underline{Z}_3 = \underline{Z}_4 = R$$
, $\underline{Z}_2 = 1/jC_2\omega$ et $\underline{Z}_5 = 1/jC_5\omega$

2. Exprimer $\underline{H}(j\omega)$ en fonction de R, C_1 , et C_2 . (/6 pts)



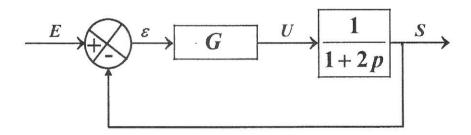
مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين دورة يوليوز 2012 - الموضوع -

- 3. Quelle est alors la nature du filtre ainsi réalisé? Quel est son ordre? (/6pts)
- 4. Exprimer la pulsation de coupure ω_0 et le coefficient d'amortissement m en fonction de R, C_1 et C_2 . (16 pts)

Partie II-B. CAN (/20 pts)

Le principe du convertisseur analogique numérique (CAN) simple rampe est illustré ci-dessous :

On suppose que la période de l'horloge **H** est très petite devant la constante de temps de charge du condensateur.


- 1. Expliquer en quelques mots le fonctionnement du convertisseur ci-dessus. (/6 pts)
- 2. Donner les chronogrammes en concordance du temps, des signaux $V_1(t)$, $V_2(t)$ et $V_3(t)$. (6 pts)

N représente le nombre d'impulsions d'horloge H de période T pendant le temps de charge t₁.

- 3. Donner l'expression de la fonction de transfert (N/E), Conclure. (/4 pts)
- 4. Quels sont les incovénions d'un tel type de convertisseur? (/4pts)

Partie II-C. Asservissement (/15 pts)

On considère la boucle d'asservissement suivante :

On suppose que la variable de commande U sature à 15 Volts.

- 1. Pour G quelconque, positif, calculer la fonction de transfert en boucle fermée : $\frac{S}{E}(p)$ (/2pt)
- 2. Quel est son gain statique G' et sa constante de temps τ' en fonction de G? (/3 pts)
- 3. Pour G = 1, on applique un échelon sur la consigne E variant de 0 à 2 Volts. Calculer et tracer S(t). (/2 pts)
- 4. En déduire les tracés de la variable d'écart $\varepsilon(t)$ et de la variable de commande u(t). Quelle est la valeur de l'erreur ε ? (/3 pts)
- 5. Pour le même échelon de position sur E de 0 à 2 Volts, calculer la valeur du gain G pour que U atteigne la tension de saturation de 15 Volts à t = 0+. (/3 pts)
- 6. Pour ce gain, quelle est la valeur de la constante de temps de la boucle fermée ? (/2 pt)