خاص بكتابة الامتحان رقم الامتحان :	تأهيلي ية والتكوين سوع	مباراة الدخول إلى مسلك أساتذة التعليم الثانوي الذ بالمراكز الجهوية لمهن التربو - دورة 2015 - الموض	ويم والامتحاتات والتوجيه	وزارة التربية الواسية والتحويل المهني
	مدة الإنجاز : 4 س	الاسم الشخصي والعاتلي : تاريخ ومكان الازدياد :	1 1 1	المسلك : تأهيلي
خاص بكتابة الامتحان	ـــــــــــــــــــــــــــــــــــــ	على المصحح التأكد من أن النقطة النهاة النهاة النقطة النهاة النقطة النهائية بالأرقام وبالد اسم المصحح وتوقيعه :		المسلك: تأهيلي مادة: الرياضيات رمز الموضوع:

A LIRE TRES ATTENTIVEMENT

L'épreuve de mathématiques de ce concours est un questionnaire à choix multiples

ATTENTION: > IL NE VOUS EST DELIVRE QU'UN SEUL QCM

> LES CALCULATRICES NE SONT PAS AUTORISEES

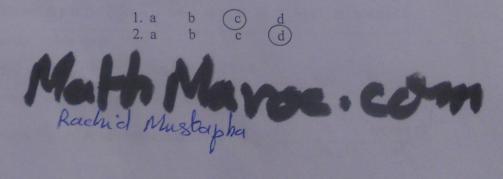
- 1. Cette épreuve comporte 40 questions numérotée de 1 à 40.
- 2. Pour chaque question, on vous propose 4 réponses a, b, c et d dont une et une seule est juste.
- 3. Barème : un point pour toute réponse juste et zéro point dans le cas contraire.

4. EXEMPLES DE REPONSES

 Question 1: 12 + 2 vaut:
 a. 3
 b. 5
 c. 14
 d. Aucune

 Question 2: le produit (-1)(-3) vaut:
 a. -3
 b. -1
 c. 4
 d. Aucune

Vous entourez sur le questionnaire la lettre correspondante à la bonne réponse :



ي سيء في هدا

	ة والتكوين	اكز الجهوية لمهن التربي	مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمر
الصفحة: 2 على 14	الموضوع	دورة 2015	مادة التخصص: الرياضيات

Analyse

Q1- Soit f la fonction définie par $f(x) = |x|^{\frac{1}{x-1}}$, on a alors:

- a. Le domaine de définition de f est $\mathbb{R} \setminus \{1\}$
- b. f est prolongeable par continuité en 1 avec $f(1) = \frac{1}{2}$
- c. f est prolongeable par continuité en 1 et la fonction prolongée est dérivable en 1 de dérivée $-\frac{e}{2}$
- d. f est dérivable sur son domaine de définition et $f'(x) = \frac{1}{(x-1)^2} |x|^{\frac{1}{x-1}}$

Q 2- Soit $a \in \mathbb{R}$ et f une fonction définie au voisinage de a. Si on suppose que f est dérivable en a, alors:

a.
$$\lim_{x \to a} \frac{xf(x) - af(a)}{x - a} = f(a) - f'(a)$$

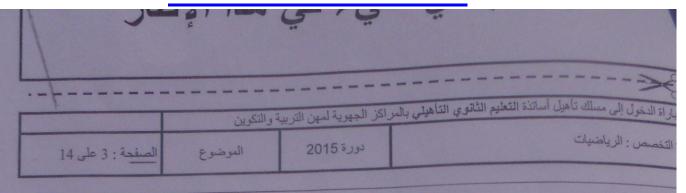
b.
$$\lim_{x \to a} \frac{xf(x) - af(a)}{x - a} = f(a) - af'(a)$$

c.
$$\lim_{x \to a} \frac{xf(x) - af(a)}{x - a} = f'(a) + f(a)$$

d.
$$\lim_{x \to a} \frac{xf(x) - af(a)}{x - a} = f(a) + af'(a)$$

Q3- Soit f définie sur \mathbb{R} par : $f(x) = \frac{\arctan(x)}{x}$ si $x \neq 0$ et f(0) = 1, on a alors :

- a. f n'est pas dérivable en 0
- b. f(x) = 1 + o(x) et f est dérivable en 0 et f'(0) = 0
- c. $f(x) = 1 + x + o(x^2)$ et f est dérivable en 0 et f'(0) = 1
- d. f est dérivable sur \mathbb{R}^* et sa fonction dérivée est $f'(x) = \frac{1}{x(1+x^2)} + \frac{\arctan(x)}{x^2}$



Q4-
$$f(x,y) = x^2 + y^2 + xy - 3x - 6y$$

- a. (0,3) est un point critique de f et est minimum global de f
- b. f n'admet pas de point critique
- c. (0,3) est un point critique de f et est maximum global de f
- d. (0,3) est un point critique de f, mais f n'admet pas d'extrémum

Q5- Pour
$$x \ge 1$$
 on pose $f(x) = e - \left(1 + \frac{1}{x}\right)^x$ alors on a:

- a. $f(x) \approx \frac{e}{x}$ et f est intégrable sur $[1, +\infty[$
- b. $f(x) \approx \frac{e}{2\sqrt{x}}$ et f est non intégrable sur $[1, +\infty[$
- c. $f(x) \approx \frac{e}{\sqrt{2}x}$ et f est intégrable sur $[1, +\infty[$
- d. $f(x) \approx \frac{e}{2x}$ et f est non intégrable sur $[1, +\infty[$

Q6- Pour
$$x \ge 1$$
, on pose $f(x) = \left(1 + \frac{1}{x}\right)^{1 + \frac{1}{x}} - a - \frac{b}{x}$
sachant que $f(x) = (1-a) + \frac{1-b}{x} + o\left(\frac{1}{x^2}\right)$, on a:

- a. Si a=1 et $b \neq 1$ alors f est intégrable sur $[1,+\infty]$
- b. Si a=1 et b=1 alors f est non intégrable sur $[1,+\infty]$
- c. Si b=1 alors f est intégrable sur $[1,+\infty]$
- d. Si a=1 et b=1 alors f est intégrable sur $[1,+\infty]$

لا يكتب أي شيء في هذا الإطار

	ة والتكوين	اكز الجهوية لمهن التربيا	مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التاهيلي بالمر
الصفحة: 4 على 14	الموضوع	دورة 2015	مادة التخصص: الرياضيات

Q7- On pose pour tout entier $n \ge 2$ $u_n = \left(\frac{\ln(1+n)}{\ln(n)}\right)^n$

- a. La suite $(u_n)_{n\geq 2}$ est majorée par 1
- b. La suite $(u_n)_{n\geq 2}$ est convergente de limite 1
- c. La série de terme général u est convergente
- d. La série de terme général $u_n 1$ est convergente

Q8- Pour tout entier n supérieur ou égal à 2 on pose $u_n = \frac{n(n-1)x^n}{n!}$ avec $x \in \mathbb{R}$

- a. Pour tout x de \mathbb{R} , la série de terme général u_n est convergente et a pour somme x^2e^x
- b. La série de terme général u_n est convergente si et seulement si |x| < 1
- c. La série de terme général u_n est divergente si et seulement si |x| > 1
- d. Pour tout x de \mathbb{R}^* , la série de terme général u_n est convergente si et seulement si |x|=1

Q9- On considère la suite de fonctions $(f_n)_n$ définies sur \mathbb{R} par : $f_n(x) = \frac{nx}{1 + n^2x^2}$

- a. La suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur $\mathbb R$
- b. La suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur $]0,+\infty[$
- c. La suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur $[a,+\infty[$ pour tout réel a>0
- d. La suite de fonctions $(f_n)_n$ converge uniformément sur un voisinage de 0

لا يكتب أي شيء في هذا الإطار

	ة والتكوين	اكز الجهوية لمهن التربيا	مباراة الدخول إلى مملك تأهيل أساتذة التطيم الثانوي التأهيلي بالمر
الصفحة: 5 على 14		دورة 2015	مادة التخصص: الرياضيات

Q10- Soit $\sum_{n\geq 1} a_n$ une série à termes positifs convergente, alors :

a.
$$\sum_{n\geq 1} \frac{1}{a_n+1}$$
 et $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ sont convergentes

b.
$$\sum_{n\geq 1} \frac{1}{a_n+1}$$
 et $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ sont divergentes

c.
$$\sum_{n\geq 1} \frac{1}{a_n+1}$$
 est divergente et $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ est convergente

d.
$$\sum_{n\geq 1} \frac{1}{a_n+1}$$
 est convergente et $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ est divergente

Q11- Soit la série
$$\sum_{n\geq 1} \frac{1}{(3n-2)(3n+1)}$$
, alors :

- a. Elle est convergente et de somme $\frac{2}{3}$
- b. Elle est divergente
- c. Elle est convergente et de somme $\frac{1}{3}$
- d. Elle est convergente et de somme 1

Q12- On considère les deux fonctions : $f(x) = \ln(1+x^2) + x + 2$ et g(x) = ch(x) + sh(x). Le réel atel que : $(f^{-1})'(2) = g(a)$ est :

- a. a = -1
- b. a = 0
- c. a = 1
- d. Aucune des affirmations précédentes n'est correcte

لا يكتب أي شيء في هذا الإطار

	ة والتكوين	اكز الجهوية لمهن التربيا	مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمر
الصفحة: 6 على 14	الموضوع	دورة 2015	مادة التخصص: الرياضيات

Q13- La dérivée seconde en 0 de la fonction f définie implicitement par l'égalité :

$$e^{\cos(f(x))} + xf(x) - 1 = 0$$
 et vérifiant $f(0) = \frac{\pi}{2}$, est :

- a. $\frac{4\pi + \pi^2}{4}$
- b. $4\pi + \pi^2$
- C. $2\pi + 2\pi^2$
- d. $\frac{4\pi + \pi^2}{8}$

Q14- On considère la suite réelle $(x_n)_n$ définie par : $x_n = \tan\left(\frac{\pi}{3} + \frac{1}{n}\right)$; alors :

- a. $(x_n)_n$ est convergente et $\lim_{n\to\infty} n(x_n \sqrt{3}) = 4$
- b. $(x_n)_n$ est une suite non bornée
- c. $\lim_{n\to\infty} x_n = \sqrt{3}$ mais $\left(n\left(x_n \sqrt{3}\right)\right)_n$ est une suite divergente
- d. $(x_n)_n$ est convergente et $\lim_{n\to\infty} n(x_n \sqrt{3}) = 3$

Q15- Soit l'intégrale
$$I = \int_0^1 \frac{x \ln x}{(x^2+1)^2} dx$$
, on a :

- a. I est divergente
- b. $I = -\frac{\ln 2}{4}$
- c. $I = -\frac{\ln 2}{2}$
- d. $I = \frac{\ln 2}{4}$

لا يكتب أي شيء في هذا الإطار

	ة والتكوين	اكز الجهوية لمهن التربي	مداراة الدخول إلى مصلك تأهيل أساتذة التطيم الثانوي التأهيلي بالمر
الصفحة: 7 على 14		دورة 2015	مادة التخصص: الرياضيات

-; on peut affirmer que:

- a. l = 3
- b. $l = -\frac{3}{2}$
- c. l=1
- d. $l = -\frac{2}{3}$

Q17- Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe C^1 avec f(0) = 0. Laquelle des inégalités est vraie?

- a. $\int_0^1 [f(t)]^2 dt \le \frac{1}{4} \int_0^1 [f'(t)]^2 dt$
- b. $\int_0^1 [f(t)]^2 dt \le \frac{1}{3} \int_0^1 [f'(t)]^2 dt$
- c. $\int_{0}^{1} [f(t)]^{2} dt \le \frac{1}{2} \int_{0}^{1} [f'(t)]^{2} dt$
- d. $\int_{0}^{1} [f(t)]^{2} dt \ge \int_{0}^{1} [f'(t)]^{2} dt$

Q18- Soit
$$f$$
 la fonction définie par $f(x,y) = \frac{1 - \cos(x^2 - y^2)}{x - y}$, alors :

a. f est définie sur le demi plan : $x \ge 0$ et $\lim_{(x,y) \to (0,0)} f(x,y) = 0$

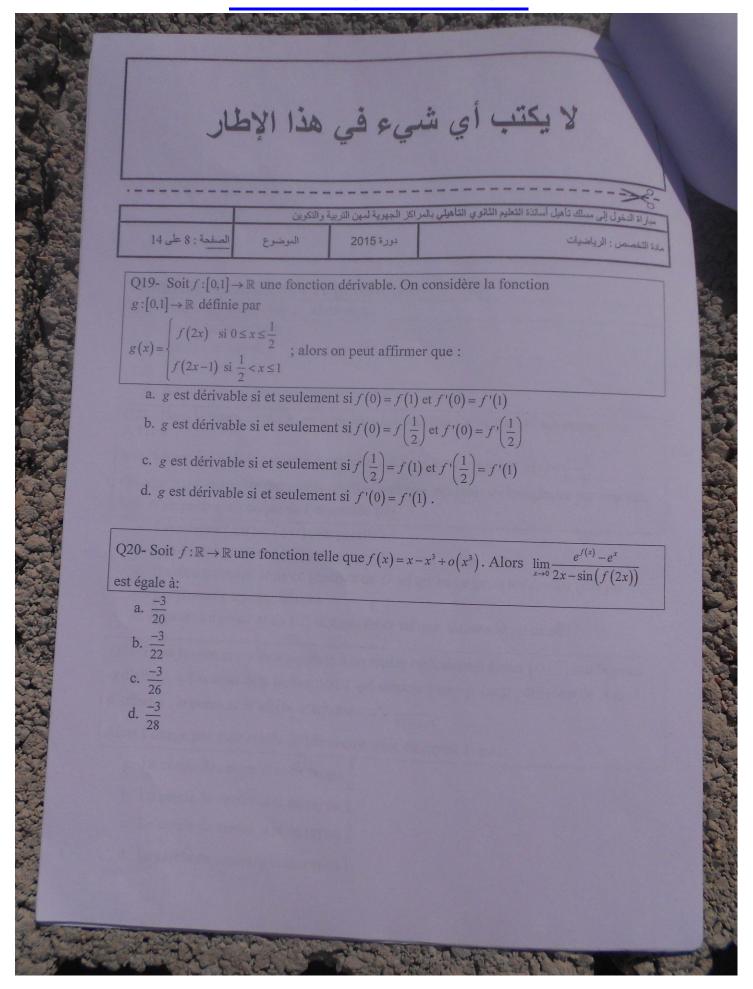
- b. f est définie sur le demi plan : $y \ge 0$ et
- c. f est définie sur le demi plan : x > y et
- d. f est définie sur le demi plan : x < y et

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 1$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 1$$



	ة والتكوين	اكز الجهوية لمهن التربيا	مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثاتوي التأهيلي بالمر
الصفحة: 9 على 14	الموضوع	دورة 2015	مادة التخصص : الرياضيات

Nombres complexes et géométrie

Q21- Soit $z \in \mathbb{C}$ de module 1; alors on a :

- a. $|1+z| \ge 1$ ou $|1+z^2| \ge 1$
- b. $|1+z| \ge 1$ et $|1+z^2| \ge 1$
- c. $|1+z| \le 1$ et $|1+z^2| \ge 1$
- d. Aucune des affirmations précédentes n'est correcte

Q22- Dans le plan complexe, on considère les points O, A et B d'affixes respectives 0, 3 et 4i.

Soit la fonction φ de la variable complexe z définie pour $z \neq 4i$ par $\varphi(z) = \frac{z-3}{z-4i}$.

On note (C) l'ensemble des points d'affixe z tel que $\varphi(z)$ soit un imaginaire pur non nul. Soit M un point quelconque de l'ensemble (C)

- a. Les droites (AM) et (BM) sont parallèles
- b. Les droites (AM) et (BM) sont perpendiculaires
- c. Il existe un point M de (C) distinct de O tel qu'en ce point les droites (OM) et (AB) soient perpendiculaires
- d. Il existe un point M de (C) distinct de O tel que OAMB soit un carré

Q23- Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overline{i}, \overline{j})$ soit le point A d'affixe i. On considère la fonction T qui associe à tout point M, différent de A et d'affixe z, le point M'd'affixe z'tel que : $z' = \frac{i}{2(z-i)}$.

Alors l'image par T du cercle (C) de centre A est de rayon 1 est :

- a. Le cercle de centre O et de rayon $\frac{1}{2}$
- b. Le cercle de centre A et de rayon 2
- c. Le cercle de centre A et de rayon $\frac{1}{2}$
- d. Le cercle de centre A et de rayon 1

	ة والتكوين	اكز الجهوية لمهن التربيا	مباراة الدخول إلى مسلك تأهيل أساتذة التعليم الثانوي التأهيلي بالمر
الصفحة: 10 على 14	الموضوع	دورة 2015	مادة التخصيص: الرياضيات

Q24- L'espace est rapporté à un repère $(0, \vec{i}, \vec{j}, \vec{k})$. On considère les deux plans P_1 et P_2

d'équations respectives 2x+y-3z+1=0 et x-y+2=0

L'équation du plan passant par le point O et contenant la droite d'intersection des deux plans P_1 et P_2 est :

a.
$$x + y - 2z = 0$$

b.
$$x + y = 0$$

c.
$$2x + y - 3z = 0$$

d.
$$x+y+z+3=0$$

Q25- Soit f une application de $\mathbb C$ dans $\mathbb C$ définie par $f(z) = z + j^2 \overline{z}$ où

$$j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 On a:

a.
$$|f(z)|^2 - 2|z|^2 = 2jz^2$$

b.
$$|f(z)|^2 - 2|z|^2 = 2 \operatorname{Re}(jz^2)$$

c.
$$|f(z)|^2 - 2|z|^2 = 2 \operatorname{Im}(jz^2)$$

d. Aucune des affirmations précédentes n'est correcte

Q26- Le plan complexe est rapporté à un repère orthonormé $(O, \overline{u, v})$.

L'ensemble des points M d'affixe z tel que $\frac{z+1}{z-1}$ est un nombre réel, est :

- a. Le cercle de centre O et de rayon 1 privé du point d'affixe 1
- b. L'axe des imaginaires purs privé du point d'affixe 1.
- c. L'axe des réels privé du point d'affixe 1.
- d. La droite d'équation y = x

		اكر الجهوبة لمعن الترب	مباراة الدخول إلى مسلك تاهيل اساتذة التعليم الثانوي التأهيلي بالمر
	والتكوين		مادة التخصص: الرياضيات
الصفحة : 11 على 14	الموضوع	دورة 2015	

Structure et Algèbre linéaire

Q27- Soient G et G' deux groupes additifs et $f:G \to G$ ' un morphisme de groupes. SiH est un sous-groupe de G; alors:

a.
$$f^{-1}(f(H)) = H \cup \ker f$$

b.
$$f^{-1}(f(H)) = H \cap \ker f$$

c.
$$f^{-1}(f(H)) = H + \ker f$$

d. Aucune des affirmations précédentes n'est correcte

Q28- Soit $A = \{a + bi/(a,b) \in \mathbb{Z}^2\}$ un sous-anneau de \mathbb{C} . Alors :

- a. 1+i et 1-i sont des éléments inversibles du sous-anneau A
- b. Si $z \in A$ et |z| = 1 alors z est inversible
- c. Les éléments inversibles de A sont en nombre infini
- d. Aucune des affirmations précédentes n'est correcte

Q29- Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorphisme définie par : f(x, y, z) = (x, -2x + y + 2z, 2x - z).

Le sous-espace propre associé à la plus grande valeur propre de f est défini par les équations:

a.
$$y - z = 0$$

b.
$$x - z = 0$$

c.
$$x - y = 0$$
 et $z = 0$

d. Aucune des autres affirmations n'est correcte

Q30- U et V deux sous-espaces vectoriels de \mathbb{R}^4 tel que :

$$U = \{(x, y, z, t) / x - t = 0 \text{ et } t - z = 0\} \text{ et } V = \{(x, y, z, t) / y - z = 0 \text{ et } 2y - z - t = 0\}$$

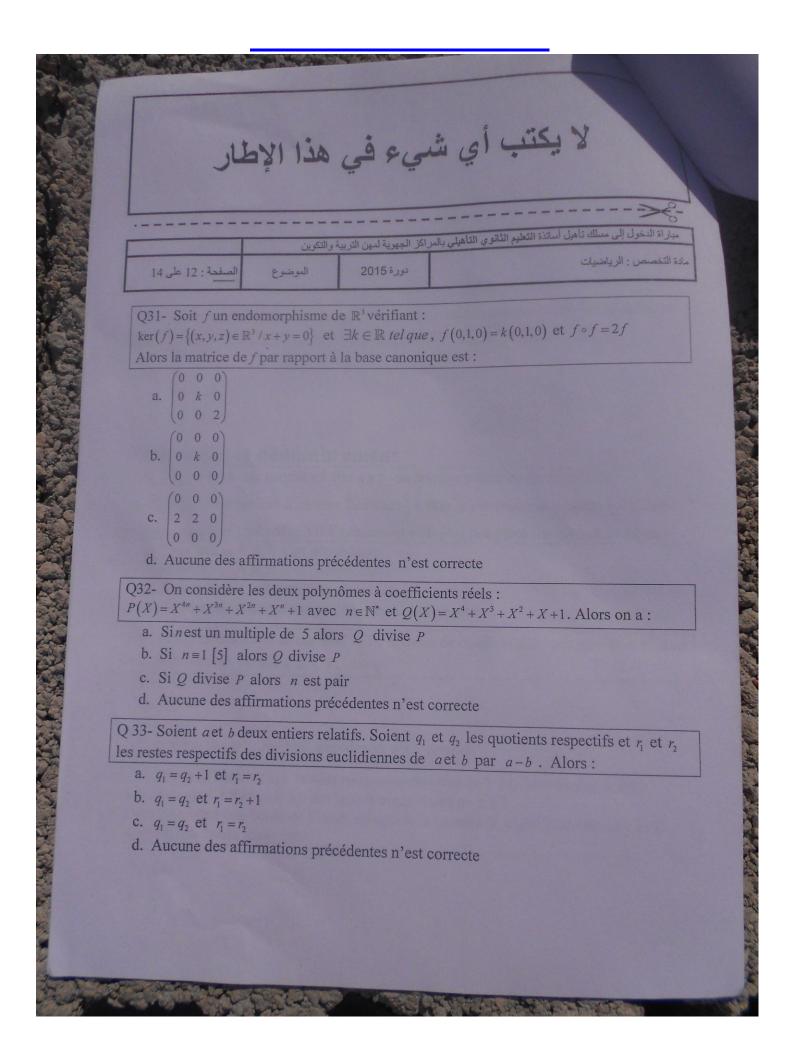
Alors U+V est un sous-espace tel que :

a.
$$U+V = \{(x, y, z, t) / y - z = 0\}$$

b.
$$U+V = \{(x, y, z, t) / x - y = 0\}$$

c.
$$U+V = \{(x, y, z, t) / z - t = 0\}$$

d. Aucune des affirmations précédentes n'est correcte



مجرو المعلول إلى المستدة التعليم الثانوي التأهيلي بالمراكز الجهوية لمهن التربية والتكوين
مادة التخصص: الرياضيات
دورة 2015 الموضوع الصفحة: 13 على 14

Q34- Soient n un entier naturel, $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$. Si r est le reste de la division euclidienne de a-1 par b alors, le reste de la division euclidienne de ab^n-1 par b^{n+1} est :

- a. $b^{n}r+1$
- b. b"r-1
- c. $b^{n}(r+1)$
- d. $b^{n}(r+1)-1$

Probabilité et dénombrement

Q 35- Soit n un entier naturel tel que $n \ge 2$, on lance n pièces de monnaie bien équilibrées (la probabilité d'obtenir face vaut $\frac{1}{2}$). Soit A l'évènement « toutes les pièces tombent du même côté» et soit B l'évènement « au plus une pièce donne face ». Alors :

- a. Pour tout n, A et B sont dépendants
- b. Pour tout n, A et B sont indépendants
- c. Si A et B sont indépendants alors n = 3
- d. Aucune des affirmations précédentes n'est correcte

Q36- Soit E un ensemble de cardinal n. Le nombre de couples (X,Y) tels que X et Y sont deux parties de E vérifiant $X \subset Y$, est:

- a. $2^{n} + 3^{n}$
- b. 3"
- c. $2^{n} + 4^{n}$
- d. Aucune des affirmations précédentes n'est correcte

Q37- Une urne contient six boules rouges numérotées de 1 à 6, huit boules noires numérotées de 1 à 8 et trois boules jaunes numérotées de 1 à 3.

On tire au hasard une boule de l'urne, elle porte le numéro 3, alors la probabilité qu'il s'agisse d'une boule jaune est :

- a. $\frac{1}{3}$
- b. $\frac{2}{3}$

