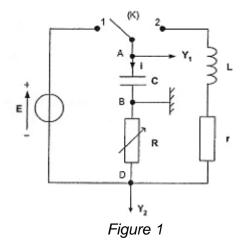
Série circuit RLC

Exercice 1 ÉNERGÉTIQUE D'UN CIRCUIT RLC SÉRIE

Au cours d'une séance de travaux pratiques, un élève réalise le circuit schématisé cidessous (figure 1).


Ce circuit est constitué des éléments suivants :

- un générateur délivrant une tension continue constante de valeur E = 4,0 V;
- une résistance R réglable ;
- un condensateur de capacité $C = 2,0 \mu F$;
- une bobine d'inductance L et de résistance r.

Un commutateur (K) permet de relier le dipôle (RC) soit au générateur, soit à la bobine.

L'entrée Y_1 d'une interface, reliée à un ordinateur, est connectée à la borne A; l'autre entrée Y_2 est connectée à la borne B.

Les entrées Y_1 , Y_2 et la masse de l'interface sont équivalentes respectivement aux entrées Y_1 , Y_2 et à la masse d'un oscilloscope.

1. Étude énergétique du condensateur

Au cours de cette question, on étudie la charge du condensateur. À l'instant de date t=0 s, le condensateur est déchargé et on bascule le commutateur en position 1.

1.1 Tensions

Représenter, sur la figure 1 EN ANNEXE À RENDRE AGRAFÉE À LA COPIE, par des flèches :

- la tension $u_{DB}(t)$ aux bornes de la résistance ;
- la tension $u_{AB}(t)$ aux bornes du condensateur.
- 1.2. Charge du condensateur
 - 1.2.1. Donner, en le justifiant, le signe de la charge q portée par l'armature A du condensateur au cours de sa charge et la relation existant entre la charge q et la tension u_{AB} .

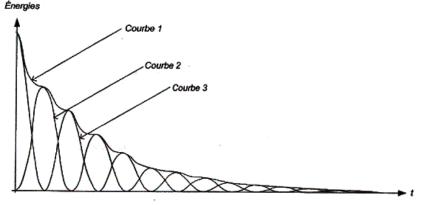
- 1.2.2. En tenant compte de l'orientation du circuit, donner la relation vérifiée à chaque instant par l'intensité i(t) du courant et la charge q(t).
- 1.2.3. A partir des expressions des tensions aux bornes des trois dipôles, établir l'équation différentielle vérifiée par $u_{AB}(t)$.
- 1.2.4. Vérifier que l'expression suivante de $u_{AB}(t)$ est solution de cette équation différentielle :

$$u_{AB}(t) = E.\left(1 - e^{-\frac{t}{R.C}}\right)$$

- 1.3. Énergie électrique E_e emmagasinée par le condensateur
 - 1.3.1. Donner en fonction de $u_{AB}(t)$ l'expression littérale de l'énergie électrique E_e emmagasinée par le condensateur.
 - 1.3.2. En déduire l'expression littérale $E_{e,max}$ de sa valeur maximale et calculer sa valeur.

2. Étude énergétique du circuit RLC

2.1. Une fois le condensateur chargé, l'élève bascule rapidement le commutateur (K) de la position 1 à la position 2 : il prend l'instant du basculement comme nouvelle origine des dates.


Le condensateur se décharge alors dans la bobine. L'acquisition informatisée des tensions permet de visualiser l'évolution des tensions $u_{AB}(t)$ et $u_{DB}(t)$ en fonction du temps.

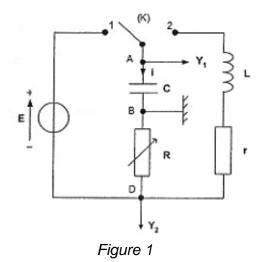
Après transfert des données vers un tableur-grapheur, l'élève souhaite étudier l'évolution des différentes énergies au cours du temps.

- 2.1.1. Exprimer littéralement, en fonction de i(t), l'énergie magnétique E_m emmagasinée dans la bobine.
- 2.1.2. À partir de l'une des tensions enregistrées $u_{AB}(t)$ et $u_{DB}(t)$, donner l'expression de l'intensité instantanée i(t)

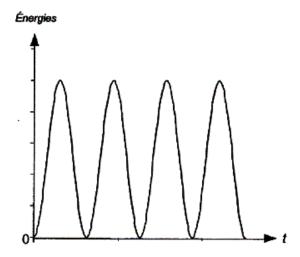
En déduire l'expression de l'énergie magnétique emmagasinée dans la bobine en fonction de l'une des tensions enregistrées.

- 2.1.3. En déduire l'expression de l'énergie totale E_T du circuit en fonction des tensions $u_{AB}(t)$ et $u_{DB}(t)$.
- 2.2 À partir du tableur-grapheur, l'élève obtient le graphe ci-dessous (figure 2) qui montre l'évolution, en fonction du temps, des trois énergies : E_e énergie électrique, E_m , énergie magnétique et E_T énergie totale.

Identifier chaque courbe en justifiant. Quel phénomène explique la décroissance de la courbe 1?


3. Entretien des oscillations

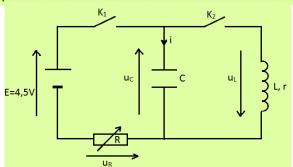
Pour entretenir les oscillations, on ajoute en série dans le circuit précédent un dispositif assurant cette fonction. On refait alors une acquisition informatisée.


- 3.1. Tracer sur la figure 3 **EN ANNEXE À RENDRE AGRAFÉE À LA COPIE**, les deux courbes manquantes. Préciser ce que chacune des trois courbes représente.
- 3.2. Pourquoi un tel régime est-il qualifié d'entretenu?

ANNEXE À RENDRE AGRAFÉE À LA COPIE

1. Étude énergétique du condensateur

3. Entretien des oscillations



Exercice 2

REALISATION D'UNE BALISE EXPERMIENTALE

Après la lecture d'un article concernant le suivi à l'aide de balises Argos de différents animaux de mer, un élève de terminale S envisage de réaliser une balise lumineuse émettant des flashs à intervalles de temps réguliers. Il pense en équiper sa tortue afin de suivre les mouvements de celle-ci lors de ses déplacements nocturnes. Pour que la diode électroluminescente émette des flashs, il veut obtenir des oscillations électriques.

Dans un premier temps, il réalise le montage schématisé ci-dessous comportant une pile de force électromotrice E = 4,5 V et de résistance interne négligeable, une bobine d'inductance L et de résistance r, une résistance R réglable et un condensateur de capacité C dont on cherche à déterminer la valeur.

1. Charge du condensateur

- 1.1. L'élève souhaite suivre l'évolution de la tension aux bornes du condensateur lors de sa charge à l'aide d'un système d'acquisition. Faire figurer sur l'annexe 2 à rendre avec la copie les branchements nécessaires à cette acquisition.
- 1.2. Les interrupteurs K₁ et K₂ sont ouverts, le condensateur est déchargé. A la date t = 0 s, il ferme l'interrupteur K₁ et déclenche l'acquisition de la tension u_C. L'élève obtient la courbe donnant u_C = f(t) et représentée sur l'annexe 2 à rendre avec la copie.

Déterminer la constante de temps τ en précisant la méthode utilisée.

- 1.3. Donner l'expression littérale de τ . La valeur de la résistance R est réglée sur 100 Ω . Calculer la valeur de C.
- 1.4. Indiquer comment procéder pour charger plus rapidement ce condensateur.

2. Décharge du condensateur à travers la bobine.

Le condensateur étant chargé, on ouvre l'interrupteur K_1 et on ferme l'interrupteur K_2 à une date prise comme nouvelle origine (t = 0 s).

- 2.1. Donner les valeurs de la tension u_C et de l'intensité i à la date t = 0 s. Justifier.
- 2.2. Étude théorique

On néglige pour cette question la résistance r de la bobine.

2.2.1. Montrer que l'équation différentielle vérifiée par la tension uc s'écrit :

$$\frac{d^2 u_C}{dt^2} + \frac{1}{LC} u_C = 0$$

2.2.2. La solution de cette éguation différentielle est de la forme :

$$u_{\text{C}} = A \ \text{cos} \bigg(\frac{2\pi.t}{T_{_0}} \bigg)$$

avec A une constante et T_0 la période propre de l'oscillateur LC. Déterminer la valeur de A.

2.2.3. L'expression de la période propre d'un circuit LC est : $T_0 = 2\pi\sqrt{L.C}$. Montrer à l'aide d'une analyse dimensionnelle que la période propre T_0 est homogène à un temps.

2.3. Étude expérimentale

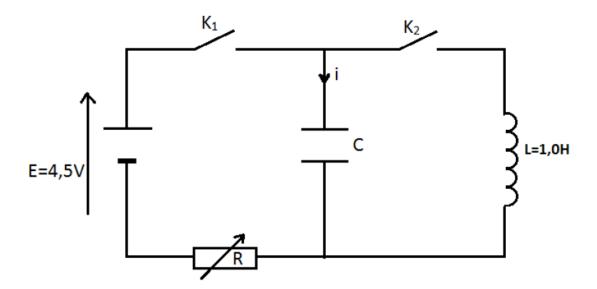
2.3.1. À l'aide du dispositif d'acquisition, on enregistre l'évolution de la tension aux bornes du condensateur lors de sa décharge. On obtient la courbe représentant u_C = f(t) ci-après.

L'étude expérimentale montre qu'il y a un amortissement des oscillations. Quelle simplification effectuée dans l'étude théorique précédente n'est manifestement pas justifiée ? Expliquer.

2.3.2. On ajoute au montage précédent un dispositif électronique permettant d'obtenir des oscillations électriques sinusoïdales de période T_0 . L'évolution de la tension $u_{\mathbb{C}}$ à l'aide de ce dispositif est donnée sur l'annexe 2 à rendre avec la copie.

Quel est le rôle du dispositif électronique ?

3. Conception du flash


L'élève intègre une diode électroluminescente idéale (DEL) au circuit de manière à ce qu'elle n'en perturbe pas le fonctionnement.

La DEL ne s'allume que lorsque la tension u_C est positive.

- 3.1. Sur le graphe u_c(t) de l'annexe 2 à rendre avec la copie, surligner sur l'axe des abscisses, les parties où la DEL s'allume.
- 3.2. L'œil arrive à distinguer deux flashs successifs si la durée d'extinction de la DEL est supérieure à 50 ms. L'élève pourra-t-il voir séparément les flashs ?

ANNEXE

Question 1.1: schéma du montage

